Throughput Maximization in Mobile Cloudlets

COMP 8790 Software Engineering Project
Semester 1, 2013

Supervisor:
Associate Professor Weifa Liang

Yan Wang u5155825@anu.edu.au
Outline

- Objectives
- Background
- Cloudlet System Model
- Algorithms
- Evaluations
- Conclusion and future work
Objectives

- Master the basic concepts of mobile computing
- Learn basic algorithms for resource management
- Evaluate system performance
Background

- What is Mobile cloud computing (MCC)?
- What is a cloudlet?
What is MCC?

- Mobile Cloud Computing (MCC) is the combination of cloud computing and mobile networks to bring benefits for mobile users, network operators, as well as cloud providers [1].

What is a cloudlet?

- A **cloudlet** is a new architectural element that arises from the convergence of mobile computing and cloud computing [2].

- A cloudlet can be viewed as a "data center in a box" whose goal is to "bring the cloud closer".

Cloudlet System Model

- **Resources:** CPU, Memory, Storage, Bandwidth
- **Time slot**
 - Generate request
 - \[T_1 \quad T_2 \quad \ldots \quad T_n \]
- **Requests:** resource + occupation period
- **Admission Control Policy**
- **Markov Chain Model**
 - (predict the system occupation information)
Admission Control Policy

- **Admission cost**
 - Unit admission cost for each resource
 - Occupation period
 - Threshold

![Graph showing the relationship between unit admission cost and system occupied resource.](image)
Markov Chain Model

A markov chain is a mathematical system that undergoes transitions from one state to another, between a finite or countable number of possible states\(^3\).

<table>
<thead>
<tr>
<th></th>
<th>Bull M</th>
<th>Bear M</th>
<th>Stagnant M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull M</td>
<td>0.9</td>
<td>0.075</td>
<td>0.025</td>
</tr>
<tr>
<td>Bear M</td>
<td>0.15</td>
<td>0.8</td>
<td>0.05</td>
</tr>
<tr>
<td>Stagnant M</td>
<td>0.25</td>
<td>0.25</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Markov Chain Model

- Get training data
- Fill in the transition matrix
- Apply to the prediction

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Online Request Throughput Maximization Problem

- One request per time slot
- Requests arrive one by one
- Check if there are requests finished at the end of each time slot
Algorithms

Online Batch Request Throughput Maximization Problem

- Multiple request per time slot
- Greedy Strategy
Evaluations
Evaluation

System throughput vs Monitoring period T (number of time slots)

- T = 24
- T = 48
- T = 96
Conclusion and future work

- System achieves an acceptable throughput with the predicted resources occupation information
- The size of training sample affect the detect accuracy
- The proposed markov model state–state can be improved to state–multi states
Thank you!

Yan Wang u5155825