Ultrasound simulation on a GPGPU - Reducing memory bottleneck using compression

COMP8750 – Computer Systems Project

Anish Varghese
u5133234
Australian National University
Supervisor: Dr. Eric McCreath
Outline

- Background
- Challenges & Bottlenecks
- Approach
- Questions
Background

• Application of Ultrasound Simulation
 • Medical Ultrasonography - System design and development
 • Delivery of Therapeutic Ultrasound

• Westervelt Equation
 • Partial Differential Equation
 • Finite Difference Method
Challenges & Bottlenecks

• Floating point operations
 • Large number of floating point computations

• Memory bandwidth
 • Transfer of data to and from CPU for computation of each grid point
 • Main focus of this project
Approach

• GPGPU
 • Utilize the parallel architecture of GPGPU
 • SIMT model of execution

• Data compression
 • Efficient data compression techniques to reduce memory bandwidth bottleneck
Approach (contd.)

• Data compression techniques
 • Floating point to fixed point conversion
 • Prediction method to compress sequences of values
 • Other approaches
Questions

u5133234@anu.edu.au