HPCG benchmark for characterizing the performance of SoC devices

Presenter: Rabi Javed Abbasi
Supervisor: Alistair Rendell
Contents

• Introduction
• Motivation and Background
• Design and Implementation
• Results and Conclusion
• Questions
Introduction

• HPCG: An emerging and effective tool for performance benchmarking.

• SoCs: Benefit from the use of parallel programming model.

• Two Competing APIs for harnessing computational resources: CUDA and OpenCl
Motivation

• HPL No longer strongly correlated to real application performance (Type1/2 usage patterns).
• Encourages poor choices in architectural features
• Benchmarking for days wastes a valuable resource
• HPCG
 • Essential application usage patterns
 • Limited support for device architectures and platforms
Background (HPCG)

- Solves a system of linear equations, $Ax = b$.
- Constructs a 3 dimensional 27 point stencil matrix.
- Four Steps in Execution
 - MultiGrid Preconditioner (MG)
 - Sparse matrix vector multiplication (SPMV)
 - Scaled vector addition (WAXPBY)
 - Dot Product (DP)
Design and Implementation

• Theoretical Model Conclusion
 • Limited CPU performance
 • Execution for large problem size
 • Unified memory access

![Diagram showing GPU and CPU connections with high, medium, and main memory bandwidths.](image)
Design and Implementation

• Implementation of algorithms
 • Preloading Matrices
 • Non blocking memory writes
 • Vector operations
 • Pinned memory - prevents swapping
 • Unified memory - managed shared memory
 • Processing multiple items per thread
 • Rearranging Matrices for unit stride access
Results

- Testing done on Jetson and FireFly SoC hardware.
 - Comparison of Wall time
Results

- Floating point operations per second
Results

- **Energy Consumption**

<table>
<thead>
<tr>
<th>System</th>
<th>Type</th>
<th>SPMV (J)</th>
<th>Dot Product (J)</th>
<th>WAXPBY (J)</th>
<th>MG (J)</th>
<th>Total (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jetson</td>
<td>Serial</td>
<td>4.935</td>
<td>0.130</td>
<td>0.174</td>
<td>25.393</td>
<td>30.633</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>1.061</td>
<td>0.073</td>
<td>0.066</td>
<td>13.167</td>
<td>14.367</td>
</tr>
<tr>
<td>FireFly</td>
<td>Serial</td>
<td>1.369</td>
<td>0.127</td>
<td>0.154</td>
<td>41.146</td>
<td>42.798</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>1.304</td>
<td>0.037</td>
<td>0.035</td>
<td>28.234</td>
<td>29.610</td>
</tr>
</tbody>
</table>

Energy consumed in Joules
Conclusion

• Benchmarking of SoCs
 – Low memory transfer bandwidth and speed
 – Low double precision performance
• Implementation of GS preconditioner
• High level of power efficiency makes the benchmark desirable.
Questions