Common Objects in Context or Not

A dataset to test and analyse the failure modes of current Vision Algorithms

Max Wang, Mateus Zitelli, Stephen Gould.
Computer Vision has improved rapidly.

a couple of elephants standing next to each other on a beach
sand beach no person seashore sun travel sunset
ocean desert summer island fair weather tropical
palm vacation hot
Recognition fails in circumstances trivial to humans

NeuralTalk captions a “red fire hydrant” for both
Recognition fails in circumstances trivial to humans

NeuralTalk detects giraffes in both images.
Good datasets fuel development

• Early datasets
 • Caltech 101 (2003)
 • 9,146 Images in 101 categories.
 • Caltech 256 (2006)
 • 30,607 Images in 256 categories.
 • Pascal VOC2009 (2009)
 • 14,743 Images
 • 20 classes.

• Modern datasets
 • Imagenet (2009+)
 • 14,197,122 images
 • 21841 synsets (sets of synonyms).
 • MS COCO (2014)
 • More than 300,000 images
 • with 80 objects in context annotated.
Current Challenges in CV – how does one measure performance?

- Classification, the identification of objects in images. Usually iconic and at a canonical perspective
Current Challenges in CV – how does one measure performance?

• Classification
• Localisation, drawing a bounding box over an iconic object
• Object Detection, drawing a bounding box over multiple objects
• Semantic Scene Labelling
• Captioning
Current Challenges in CV – how does one measure performance?

• Classification
• Localisation
• Object Detection
• Semantic Scene Labelling - Object Detection at a per-pixel scale.

University of Oxford

Objects appearing in the image:

- Bicycle
- Bird
- Dog
- Person
Current Challenges in CV – how does one measure performance?

• Classification
• Localisation
• Object Detection
• Semantic Scene Labelling
• Captioning – generating a description for an image

- a man is holding a stuffed animal in his mouth
- a couple of giraffes standing next to a tree
- a group of giraffes that are standing in the woods
- a woman holding a teddy bear in front of a mirror

"a cat is sitting on a couch with a remote control."
We should rethink the goals of Computer Vision

• What is important?
 • Robustness in classification over precision.
 • Localisation
 • Ability to understand and generalise concepts

• How can we achieve this?
 • New metrics for accuracy.
 • New challenges to test a framework’s understanding
 • A dataset which aids in analysing failure.
Our Proposed Solution - COCOONO

- We create a dataset consisting of permutations of a base image

Original

Clock removed

Airplane removed
Our Proposed Solution - COCOONO

• We create a dataset consisting of permutations of a base image

Original

Yellow alternative

Blue alternative
Our Proposed Solution - COCOONO

• We create a dataset consisting of permutations of a base image
Our Proposed Solution - COCOONO

• We create a dataset consisting of permutations of a base image
• This enables easy analysis of a vision framework behaviour on each set of images
• New “Challenges” for Computer Vision
COCOONO: Describe the Difference

The second image has a clock on the tower below the statue, however the plane in the clouds has been removed.
COCOONO: Describe the Difference

The snowboarder has been moved closer to the top of the snow covered slope from the bottom.
COCOONO: Real or Fake?

(-5.909907) a man riding a snowboard down a snow covered slope
Gathering the Dataset

• COCO took 70,000 person-hours.
• Crowdsourcing reduces cost, but gathering the dataset will still not be cheap/easy.
• We will automate as many tasks as possible.
Automating the Tasks

- COCO provided bounding polygons for objects
Image Inpainting

- Removes objects from the image
Image Reshuffling

- Moves objects around in an image
Image Recoloring

• Define classes which can be recolored and target colors
How we are currently gathering the dataset

• We setup a webapp where users evaluate automatically edited images.

• Technical details
 • Back-end: Node.js
 • Front-end: React.js w/ Redux
 • Database: RethinkDB
How we are currently gathering the dataset

• We integrate the Autodesk Pixlr online image editor which provides similar functionality to photoshop.
• Users can fix remaining inpainting problems.

• We would like to eventually develop an in-house image editing application with is more streamlined and possesses more useful tools.
Ensuring Dataset Quality

• Crowd-sourcers are unpredictable - ratings can be inconsistent. How do we ensure the quality of our dataset?
• Upon first login, users are shown a tutorial and ‘tested’
• Users are assigned a ‘reliability score’ which changes as they agree/disagree with other users
• Images are accepted only if the average grade is greater than 4.9 and the sum of the reliability scores of the graders exceeds some threshold.
Results so far

• 360,000 inpainted images.
• 2100 images evaluated.
• 600 good quality images (5 star or edited).
 And counting...
Results so far

Relation between inpainted area and grades

Grade

Square root of the inpainted area (\sqrt{A})
Our Dataset on Neuraltalk

- Of 610 five star inpainted images, Neuraltalk captioned the removed object in 93 of them (15%)
Our Dataset on Neuraltalk

Most commonly mistaken inpainted objects:

- surfboard: 9 detected, 4 not detected
- skateboard: 5 detected, 3 not detected
- sink: 3 detected, 3 not detected
- bear: 7 detected, 2 not detected
- toilet: 8 detected, 3 not detected
- skis: 10 detected, 4 not detected
- clock: 3 detected, 4 not detected
- broccoli: 4 detected, 6 not detected
- giraffe: 9 detected, 10 not detected
- fire hydrant: 4 detected, 5 not detected
- kite: 10 detected, 6 not detected
- bird: 16 detected, 13 not detected
- airplane: 13 detected, 13 not detected
- frisbee: 3 detected, 10 not detected
- person: 10 detected, 19 not detected
- other: 415 detected, 97 not detected
Our Dataset on Neuraltalk

Normal Probability Plot for varea vs detecting removed object
Conclusion

• COCOONO aims to guide research along a path where true contextual understanding of an image is achieved.
Questions?

Desert Background from http://e2ua.com/WDF-943879.html

Neuraltalk: Karpnathy, A and Fei-Fei, L (2014), Deep visual-semantic alignments for generating image descriptions arxiv

Vision Frameworks Used:

Neuraltalk: https://github.com/karpathy/neuraltalk

Caffe: http://caffe.berkeleyvision.org/

Clarifai: https://www.clarifai.com/

Wolfram ImageIdentify: https://www.imageidentify.com/

University of Adelaide: http://demo.cs.adelaide.edu.au/

Universify of Oxford (CRFasRNN): http://www.robots.ox.ac.uk/~szheng/crfasrnn/demo/