Evolutionary Algorithm with Recombination Hotspots

Presenter: Siu Kei, Muk (u5721042)
Supervisor: Tom Gedeon
Objective - Optimization

• Find the “best” solution under some conditions/requirements

• Situations:
 • Different cost for the Same Effect
 • Different return for the Same Investment budget

• Find the most cost-effective decision
 • Minimizes costs, and/or
 • Maximizes benefits
Traditional Method - Differentiation

• Approximates the change of objective function
 • Evaluates where the performance does not improve anymore

• Examples:
 • Gradient Descent (Greedy Hill-Climbing)
 • Lagrange Multiplier
Comments on Traditional Methods

• Pros:
 • Convergence generally fast
 • Computationally (relatively) inexpensive
 • Solution often acceptable

• Cons:
 • Can only find local optimum close enough
 • No progress after reach a local optimum
Genetic Algorithm

• Global search (with randomness) in solution space
• Idea: Darwinian Evolution – Survival of the fittest
 • Less cost / greater benefit are “stronger” individuals
 • Favors selection and reproduction
 • Useful traits (properties) are preserved and evolved
• Diversity
 • Effective coverage of population
 • Prevents premature convergence (domination of local optimum)
Solution Encoding

• Haploid
 • A single vector
 • Suitable for static environment

• Diploid
 • Two vectors
 • Performs well in dynamic environment
 • Provides implicit “memory” of unused traits
 • Needs decoding scheme (Dominance mapping)
Recombination Hotspots

• Regions where crossover occurs with high frequency
• Results in Modularity
 • Internal structure separated into independent parts
 • Swapping of genetic materials on a modular level
 • Promotes reusability of parts, each for dedicated function
• Evolvability is suspected to be related to hotspots
• E.g.: Chimpanzee and human